Mass extinctions and sea-level changes
نویسندگان
چکیده
Review of sea-level changes during the big five mass extinctions and several lesser extinction events reveals that the majority coincide with large eustatic inflexions. The degree of certainty with which these eustatic oscillations are known varies considerably. Thus, the late Ordovician and end Cretaceous extinctions are associated with unequivocal, major regressions demonstrated from numerous, widespread regions. In contrast, the multiple, high frequency sea-level changes Ž . reported for the Frasnian–Famennian crisis based on the supposed depth-preferences of conodont taxa have little support from sequence stratigraphic analyses, which reveals the interval to be one of highstand. The end Permian mass extinction has w long been related to a severe, first order lowstand of sea level Newell, N.D., 1967. Revolutions in the history of life. Geol. x Soc. Am. Spec. Pap. 89, 63–91. based primarily on the widespread absence of latest Permian ammonoid markers, but field evidence reveals that the interval coincides with a major transgression. Newell’s hypothesis that marine extinctions are related to shelf habitat loss during severe regression remains tenable for the end Guadalupian and end Triassic extinction events but not for other crises. Rapid high amplitude regressive–transgressive couplets are the most frequently observed eustatic changes at times of mass extinction, with the majority of extinctions occurring during the transgressive pulse when anoxic bottom waters often became extensive. The ultimate cause of the sea-level changes is generally unclear. A glacioeustatic driving mechanism can only be convincingly demonstrated for the end Ordovician and end Devonian events. Ž . At other times, it is speculated that they may relate to the widespread regional doming and subsequent collapse caused by Ž . the impingement of superplumes and ultimate eruption on the base of the lithosphere. q 1999 Elsevier Science B.V. All rights reserved.
منابع مشابه
An ubiquitous ~62 Myr periodic fluctuation superimposed on general trends in fossil biodiversity
A 62 Myr periodicity is superimposed on other longer-term trends in fossil biodiversity. This cycle can be discerned in marine data based on the Sepkoski compendium, the Paleobiology Database, and the Fossil Record 2. The signal also exists in changes in sea level/sediment, but is much weaker than in biodiversity itself. A significant excess of 19 previously identified Phanerozoic mass extincti...
متن کاملComparing the evidence relevant to impact and flood basalt at times of major mass extinctions.
The five major mass extinctions identified in 1982 by Raup and Sepkoski have expanded to six, with the suggestion that the Permian-Triassic extinction was a double event. Is there a general explanation for great mass extinctions, or can they result from different triggers, or even from internal system instabilities? The two most-discussed candidates for a general extinction mechanism are impact...
متن کاملImpacts, volcanism and mass extinction: random coincidence or cause and effect?
Large impacts are credited with the most devastating mass extinctions in Earth’s history and the Cretaceous – Tertiary (K/T) boundary impact is the strongest and sole direct support for this view. A review of the five largest Phanerozoic mass extinctions provides no support that impacts with craters up to 180 km in diameter caused significant species extinctions. This includes the 170 km-diamet...
متن کاملBiotic Effects of Sea Level Change: the Pleistocene Test
Species diversity change, and therefore compositional changes in a biota, may be associated with changes at any of three ecological evels, involving the number of provinces within the biosphere, of communities within provinces, and of species represented within communities. Pleistocene sea level changes did not much affect the marine biosphere at any ecological level. An analysis of an extensiv...
متن کاملThe end-Permian extinction
The end Permian extinction was the greatest mass extinction of the Phanerozoic Era. It impacted marine and terrestrial plants and animals. Although the rate of the extinction has been controversial in the past, recent evidence suggests that the extinction progressed in two pulses approximately 5-12 million years apart. The second pulse of the extinction is marked by a sharp temperature spike an...
متن کامل